Adaptation to various sources of dietary sulfur by ruminants.
نویسندگان
چکیده
The objective of these experiments was to determine adaptation by ruminants to dietary sulfur. In Exp. 1, lambs (n = 54; BW = 33.6 ± 0.4 kg) were allotted to 3 treatments: 1) 0% added dietary S (0%S), 2) 0.2% added dietary S (0.2%S), or 3) 0.4% added dietary S (0.4%S). Sulfur was added to the diet as Na(2)SO(4). Lambs fed the 0.2%S and 0.4%S diets had greater (P < 0.01) ADG and G:F compared to those fed the 0%S diet. There was time × diet interaction (P < 0.01) on ruminal hydrogen sulfide gas (H(2)S) concentrations. Ruminal H(2)S was not detected in lambs fed 0%S at any time. Ruminal H2S were not affected (P > 0.19) by diet on d 1 or 8; however, H(2)S were greater (P < 0.01) for lambs fed 0.2%S and 0.4%S than for lambs fed 0%S on d 15, 22, and 29 (0.2% was 931, 846, and 1,131 mg/L and 0.4% was 975, 737, and 1,495 mg/L on d 15, 22, and 29, respectively). These data suggest it takes at least 29 d for peak ruminal H(2)S to occur after exposure to Na(2)SO(4). In Exp. 2, lambs (n = 66; BW = 51.1 ± 0.4 kg) were allotted to 3 treatments: 1) 60% dried distillers grains with solubles (DDGS), 2) corn-based diet with Na(2)SO(4), or 3) corn-based diet with H(2)SO(4). All diets were formulated to contain 0.4%S. Lambs fed Na(2)SO(4) had greater (P < 0.05) ADG, DMI, and G:F than those fed H(2)SO(4) or 60% DDGS. A time × diet interaction occurred (P < 0.01) for ruminal H(2)S. There was no difference (P = 0.82) in H(2)S of lambs on d 1. However, at d 14 and 27 lambs fed supplemental Na(2)SO(4) had the lowest H(2)S concentrations while lambs fed 60% DDGS had the greatest (P < 0.01 on both d); lambs fed H(2)SO(4) were intermediate and different than both. These data suggest that at the same dietary S concentration, acidic S sources increased H(2)S and decreased DMI and ADG. In Exp. 3, Angus cross calves (n = 72; average initial BW = 324 ± 3 kg) were allotted to 3 treatments: 1) corn-based control d 0 through 85 (0%DDGS), 2) gradual step up to 60% DDGS diet (20% DDGS d 0 to 6, 40% DDGS d 7 to 13, 50% DDGS d 14 to 20, and 60% DDGS d 21 to 85; Step-up), or 3) 60% DDGS d 0 to 85 (60%DDGS). Overall, cattle fed 0%DDGS had increased (P < 0.05) DMI and ADG compared with those fed 60%DDGS or Step-up, and G:F was not affected (P = 0.42) by dietary treatment. On d 14, ruminal H(2)S concentrations were greater (P < 0.01) for cattle fed 60%DDGS and Step-up than for those fed 0%DDGS, and they did not differ (P ≥ 0.22) between DDGS-containing diets. These data illustrate that source of S impacts ruminal S metabolism and that S from DDGS is more readily reduced than S from Na(2)SO(4) or H(2)SO(4).
منابع مشابه
Sulfur metabolism in ruminants. II. In vivo availability of various chemical forms of sulfur.
Lambs fed semipurified diets supplemented with DL-methionine, hydroxy analog of methionine, calcium sulfate, sodium sulfate or elemental sulfur gained faster, consumed more dry matter, and digested and retained greater weights of nitrogen and sulfur (P<.01) than lambs fed a sulfur deficient diet. Lambs fed a sulfur deficient diet had severe weight losses in 40 days and were removed from the exp...
متن کاملExogenous Polysaccharidases for Young Ruminants: A Review Interfacing Nutrition, Economics, and Health
Neonate ruminants possess little cell-wall and starch degrading enzyme activity. Importantly, early establishment of fibrolytic, amylolytic, and proteolytic capacities is influential for the early expansion of the reticulorumen epithelia. Such an early development in reticulorumen fermentation will enable a timely hepatic adaptation to volatile fatty acids assimilation. The early nutrient relea...
متن کاملChapter 12 final.pages
Sulfur (S) is an essential mineral for animals and serves many important biological functions in the animal’s body. However, when excess S is present in ruminant diets, neurological problems can occur. When feed and water containing high levels of S (greater than 0.40% of diet DM) are fed to ruminants, a condition called polioencephalomalacia (PEM) can occur. Polioencephalomalcia is caused by n...
متن کاملStudy the effect of environmental factors and different carbon sources on dibenzothiophene desulfurization by Exophiala spinifera
It is necessary to reduce the amount of sulfur in fossil fuels due to direct impact of the quality of these fuels on the environment. In this research, a novel fungus strain of Exophiala spinifera, namely FM, was used to desulfurize dibenzothiophene (DBT) as a model cyclic sulfur compounds in oil and fossil fuels. HPLC analysis indicated that the fungus was capable of reducing 99% of DBT concen...
متن کاملCase Report - Polioencephalomalacia in Dairy Calves
Polioencephalomalacia (PEM) is a neurologic condition in ruminants that can be caused by several dietary factors including water deprivation-sodium ion toxicosis, lead poisoning and high sulfur intake. Three month old calves on a 1500-cow dairy experienced neurologic problems during three separate episodes. The morbidity rate approached 75% each time. Based upon post-mortem examination, three o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2014